Dielectrics in the
Electrostatic Field

7.1

7.2

Introduction

We now know that conductors change the electrostatic field by a mechanism called
electrostatic induction, because any conductor has a large number of free charges that
move in response to even the slightest electric field.

A wide class of substances known as dielectrics or insulators do not have free
charges inside them. We might expect that, consequently, they can have no effect
on the electrostatic field. This is not correct, although the mechanism by which di-
electrics affect the electric field is different than in the case of conductors.

Dielectrics or insulators have many applications in electric engineering. Just
as there is no electrical device without conductors, there is also no device without
insulators. Therefore the analysis of dielectrics in an electrostatic field is as important
as that of conductors.

Polarization of Dielectrics in the Electrostatic Field

Molecules of most substances behave as if electrically neutral when they are not in
an electric field. We can imagine a molecule as a positive central point charge Q sur-
rounded by a spherical cloud of negative charges of total charge —Q (Fig. 7.1a). This
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(a) (b) (©)

Figure 7.1 (a) Model of a nonpolar molecule, (b) the molecule
in an external electric field, and (c) the electric dipole that
produces the same field as the molecule in (b)

is an acceptable model, for in reality, at distances larger than a few molecular diam-
eters, the fields of the positive and negative charges cancel out and there is no net
electric field. In this rough model of a molecule, some nonelectric forces that keep the
molecule spherical and symmetrical must also be present.

Assume now that we move the molecule in Fig. 7.1a into an electric field with
electric field strength E. The field acts by a force QF on the central positive charge,
and by the same force, in the opposite direction, on the negatively charged cloud.
Due to the forces keeping the molecule together, this will only slightly displace the
central positive charge with respect to the center of the negatively charged cloud, as
in Fig. 7.1b. The cloud produces the same field at points far away as if the total charge
were at its center. Therefore, if we are interested in the electric field produced by the
We Can Con51der it as two pomt charges, Q and -Q, d1splaced

dzpole e

In some substances, such as water the molecules are electncdlpoles even with
no applied electric field. Such molectiles are known as polar moleculgs. Those that are
not dipoles in the absence of the field are termed nonpolar molecules. In the absence of
the electric field, polar molecules are oriented at random and no electric field due to
them can be observed. If a polar molecule is brought into an electric field, there are
forces on the two dipole charges that tend to align the dipole with the field lines (Fig.
7.2). This alignment is more pronounced for stronger fields.

Thus for dielectrics consisting of any of the two types of molecules, the external
electric field makes the substances behave as huge arrays of oriented electric dipoles.
We say in such a case that the dielectric is polarized. The process of making a dielectric

7o polarized is known as polarization.

The Polarization Vector

According to our model, a polarized dielectric is a vast collection of electric dipoles
situated in a vacuum. If we knew the charges Q and —Q of the dipoles and their
positions, we could evaluate the electric field strength and the scalar potential at
any point. This, however, would be practically impossible due to the extremely large
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—-Q E

Figure 7.2 Model of a polar molecule in an
external electric field

number of dipoles. For this reason we define a kind of average dipole density, a vector
quantity known as the polarization vector.

We first need to characterize a single dipole by a vector quantity. Let d be the
position vector of the charge Q of the dipole with respect to the charge —Q. We define
the electric dipole moment of the dipole (Fig. 7.3) as

p=Qd (C-m). (7.1)
(Definition of dipole moment)

The unitof pis C-m.

Consider now a small volume dv of a polarized dielectric. Let N be the num-
ber of dipoles per unit volume inside dv, and p be the moment of the dipoles. The
polarization vector, P, at a point inside dv is defined as

2

P= ;;p —Np  (C/m). 72)

(Definition of the polarization vector)

Qe
d| p=Cd
-Q

Figure 7.3 The dipole moment of an electric
dipole is defined as the product Qd. Note
that the vector distance d between the two
charges is adopted to be directed from the
negative to the positive dipole charge.
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Because the unit for the dipole moment, p, is C - m, the unit of P is C/ m?. Note that
this is the same unit as that of the surface charge density o.

From this definition it follows that if we know the polarization vector at a point,
we can replace a small volume dv (which contains a large number of dipoles) enclos-
ing that point by a single dipole of moment

dp =Pdv (C-m). (7.3)

(Dipole moment of a small domain dv with polarization P)

This expression allows us to express the scalar potential and electric field strength of
a polarized dielectric as an integral.

Equation (7.3) can be used for the evaluation of V and E of a polarized dielectric,
but for that we need to know the expressions for V and E of a single dipole. Consider
the dipole shown in Fig. 7.4. The scalar potential at a point P in the field of a dipole
is obtained as the sum of potentials of the two dipole point charges:

Vp (7.4)

Q —Q__Q(l 1)

_47reor+ dregr-  4meg ry T

Because the distance d between the dipole charges is always much smaller than the
distance 7 of the point P from the dipole, the line segments r, 74, and r_ are practically
parallel. Therefore (Fig. 7.4)

1 1 r-—ry dcosd

— - — = , 7.5
ry o T ryr r2 73)
so that the scalar potential at point P has the form
d cos6 Suy
vp= LBy, (7.6)

dregr?  Amegr?

where u, is the unit vector directed from the dipole toward point P (see Fig. 7.4). The
potential of a point in the field of the dipole does not depend on Q and d separately,

Figure 7.4 A point P in the field of an electric
dipole. The distance r between P and the
dipole is much larger than the dipole size d
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but on their product, p, the dipole moment. The electric field strength therefore also
depends only on p, and not on Q and d separately. (It is a simple matter to obtain E
from the relation E = —VV, which is left as an exercise for the reader.)

The electric scalar potential of a polarized dielectric of volume v is now obtained
from Egs. (7.3) and (7.6) as

Vet /P'“fdv ). 7.7)
4req v r2

(Potential of a polarized dielectric body)

When polarized, a dielectric is a source of an electric field. Consequently, the
polarization of a dielectric body depends on the primary field, but also on its own
polarization. It can be determined only if we know the dependence of the polar-
ization vector on the fotal electric field strength, E. Experiments show that for most
substances

P=yeE (PisinC/m?, x.isdimensionless), (7.8)

i.e., P at every point is proportional to E at that point. The constant y, is referred to
as the electric susceptibility of the dielectric. If it is the same at all points, the dielectric
is said to be homogeneous, and if it varies from point to point, the dielectric is inho-
mogeneous. Dielectrics for which Eq. (7.8) applies are known as linear dielectrics, and
they are nonlinear if such a relation does not hold. For all dielectrics, x. > 0. Only for
avacuum, x, = 0.

Questions and problems: (7.1 to Q7.13, P7.1 to P7.3

7.4 Equivalent Charge Distribution of Polarized Dielectrics

A polarized dielectric can always be replaced by an equivalent volume and surface
charge distribution in a vacuum. This is a very useful equivalence because we know
how to determine the potential and field strength of such a charge distribution. This
equivalent charge distribution can be derived from the polarization vector, P.
Qualitatively, when a dielectric body is brought into an electric field, as we said
earlier, all the molecules become dipoles oriented in the direction of the electric field.
Inside a homogeneous dielectric the fields of all the dipoles cancel out on average,
because the negative part of one dipole comes close to the positive part of its identical
neighbor. However, at the surface of the dielectric there will be ends of dipoles that

- are uncompensated. This is the extra charge that appears at the surface of a dielectric
| when brought into an electric field. In the case of homogeneous dielectrics, this is the
- only uncompensated charge due to polarization. Inside an inhomogeneous dielectric,

* there will be some net volume charge as well, because all the individual dipoles are
| not identical and their field does not cancel out on average anymore. Both surface
1 and volume polarization charges can now be considered to be in a vacuum, as the
i rest of the dielectric does not produce any field.
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The relationship between the polarization charge inside a closed surface and the
polarization vector on the surface can be derived by counting the charge that passes
through a surface during the polarization process (the derivation is not given in this
text). The resulting expression for the polarization charge in terms of P is

mes=—fe51’-ds ©. 7.9)

(Polarization (excess) charge in a closed surface enclosing a polarized dielectric)

Example 7.1—Proof that the volume polarization charge density is zero inside a ho-
mogeneous polarized dielectric. Consider a polarized homogeneous dielectric of electric sus-
ceptibility x., with no volume distribution of free charges, and a small closed surface AS in it.
Because we have replaced the dielectric with equivalent charges in a vacuum, Gauss’ law ap-
plies and the fotal charge, free and polarization, enters on the right-hand side of the formula
for Gauss’ law. By assumption, there are no free charges in AS, and therefore

60% E-dS = Qp in AS- (710)
AS

According to Eq. (7.9), Qp in as can also be expressed as

mes=—j§ P-dS=—xe60y§ E-ds. (7.11)
AS AS

Since %, > 0, Egs. (7.10) and (7.11) can both be satisfied only if the flux of E through AS is zero.
The flux of P through AS is therefore also zero. This means that inside a homogeneous dielectric
there can be no volume distribution of polarization charges, i.e., polarization charges reside only in a
thin layer on the dielectric surface.

Questions and problems: Q7.14 and Q7.15

Density of Volume and Surface Polarization Charge

Consider now an inhomogeneous polarized dielectric. We will show that inside such
a dielectric there is a volume distribution of polarization charges. To determine the
density of these charges, pp, we start from Eq. (7.9). Imagine a small closed surface AS
enclosing the point at which we wish to determine pp. The left-hand side of Eq. (7.9)
can be written as a product of pp and the volume Av enclosed by AS. Consequently,

P-ds
oy = — (S’fAs

C/m?). 7.12
Av )Av—»O ( /m ( )

The expression in parentheses is known as the divergence of vector P. (For addi-
tional explanations of the concept of divergence, read Section A1.4.2 of Appendix 1
before proceeding.) It can always be evaluated from this definition in any coordinate
system. In a rectangular coordinate system, the divergence of a vector P has the form
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9P, 9P, 9P,

3
P oy 2 (C/m”), (7.13)

(Divergence in a rectangular coordinate system)

where Py, Py, and P; are scalar rectangular components of the vector P. Using the
del operator, Eq. (4.20), the expression for the divergence on the right side of this
equation can formally be written in a short form,

divP = V - P. (7.14)

Thus the volume density of polarization charges can be written as

pp = —divP=~V.P  (C/m’). (7.15)

(Volume density of polarization charges)

Note that Eq. (7.15) is but a shorthand of Eq. (7.12), and that in a rectangular coordi-
nate system, which we will use frequently, V - P is given by Eq. (7.13).

To determine the density of surface polarization charges, consider Fig. 7.5,
showing the interface between two polarized dielectrics, 1 and 2. Apply Eq. (7.9) to
the closed surface that looks like a coin, shown in the figure. There is no flux of vector
P through the curved surface because its height approaches zero. Therefore the flux
through the closed surface AS is given by

f P.dS=P; - AS1+Pr-ASy .
AS

Let us adopt the reference unit vector, n, normal to the interface, to be directed
into dielectric 1 (Fig. 7.5). Then we can write AS; = AS;n and AS; = —~ASyn. The

Figure 7.5 Interface between two polarized
dielectrics
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surface charge density is obtained if we divide the charge enclosed by AS by the area
ASq cut out of the interface by AS. So we have

op=n-P,-Py) (C/m?). (7.16)
(Surface density of polarization charges on the interface between two dielectrics)

If we know the polarization vector at all points of a dielectric, from Eq. (7.15)
we can find the density of volume polarization charges (if they exist), and from the
last equation we can find the density of surface polarization charges (which always
exist). Because there are no excess charges in the rest of the dielectric, it can be disre-
garded. The problem of dielectric bodies in electrostatic fields is therefore reduced to
that of a distribution of charges in a vacuum, a problem we know how to solve. What
remains to be done is the determination of the polarization vector at all points. In
most instances this is hard to do, but in many important cases it can be done using
numerical methods.

Questions and problems: Q7.16 to Q7.19, P7.4 to P7.9

Generalized Form of Gauss’ Law: The Electric Displacement Vector

% E.dS — Qfree in 5 + onlarization in S
s

>

With the knowledge from the preceding section, Gauss’ law can be extended to elec-
trostatic fields with dielectric bodies.

We know that from the electrostatic-field point of view, a polarized dielectric
body can be considered as a distribution of volume and surface polarization charges
in a vacuum. Gauss’ law is valid for a vacuum. Therefore it is straightforward to
extend Gauss’ law to the case of fields with dielectrics: simply add the polarization
charge to the free charge enclosed by S. Consequently, Gauss’ law in Eq. (5.4) becomes

(7.17)
€0

Usually, this generalized Gauss’ law is written in a different form. First, the
polarization charge in S is represented as in Eq. (7.9). Note that the surface S is the
same for the integral on the left-hand side of Egs. (7.17) and (7.9). We can, therefore,
multiply Eq. (7.17) by €, move the integral representing Qpolarization in § to the left-
hand side of Eq. (7.17), and use just one integral sign. The result of this manipulation
is

f (@E+P)-dS = Qpeeins  (O). (7.18)
S

This is a very interesting result: the flux of the sum of the vectors ¢E and P
through any closed surface S is equal to the total free charge enclosed by S. The form
of Gauss’ law (7.18) is more convenient than that of (7.17) because the only charges
we can influence directly are free charges.
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To simplify Eq. (7.18), we define the electric displacement vector, D, as

D=gE+P (C/m?). (7.19)

(Definition of the electric displacement vector)

With this definition, the generalized Gauss’ law takes the final form:

55 D.dS = Qeins (). (7.20)
S

(Generalized Gauss’ law)

The expression in Eq. (7.19) is the most general definition of the electric dis-
placement vector. If the dielectric is linear (as most, but not all, dielectrics are), vector
D can be expressed in terms of the electric field strength, E:

D = ¢oE + €ox.E = eg(1 + xo)E = qoe,E=€¢E  (C/m?), (7.21)
(Electric displacement vector in linear dielectrics)

where
& = (1+ xe) (dimensionless) (7.22)

(Definition of relative permittivity—linear dielectrics only)

is known as the relative permittivity of the dielectric, and

€ = €€) (F/m). (7.23)
(Definition of permittivity—Ilinear dielectrics only)

as the permittivity of the dielectric.

Because the electric susceptibility, x., is always greater than zero, the relative
permittivity, €, is always greater than unity. The most frequent values of ¢, are be-
tween 2 and about 10, but there are dielectrics with much higher relative permit-
tivities. For example, distilled water (which is a dielectric) has relative permittivity
of about 80 (this is because its molecules are polar molecules). A table of values of
relative permittivities for some common dielectrics is given in Appendix 4.

e e
’ ”\( Example 7.2—Electric field in a pn diode. A pn diode, sketched in Fig. 7.6, is a fund
CB\S mental semiconductor device and is a part of all bipolar transistors. Unlike in a metal, where
electrons are the only charge carriers, in a semiconductor diode both negative and positive free
charges are responsible for current flow when the diode is biased. The semiconductor material
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Figure 7.6 (a) Sketch of a pn diode and (b} its approximate charge density profile. (c) A diode can be
approximated by a sheet of negative surface charge and a bulk of positive volume charge. (d)
Superposition of the individual fields of the two charge distributions from (c) gives the final field

distribution in the diode.
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has a permittivity ¢ (for silicon ¢, = 11, and for gallium arsenide €, = 13), and if it is pure
it behaves as a dielectric. When certain impurities called dopants are added to the material, it
becomes conductive. The p region of the diode is a doped semiconductor material that has p
positive free charge carriers per unit volume. This part is in physical contact with the n region,
which has n negative free charge carriers per unit volume.

When the two parts are put together but not biased, the negative charge carriers (elec-
trons) diffuse into the neighboring p region. Positive charge carriers (“holes” with a charge
equal to that of an electron) diffuse into the neighboring n region. (The diffusion process is
similar to the diffusion of two different gases through a thin membrane, except that the dif-
fused charge carriers remain in the immediate vicinity of the boundary surface.) Because the
negative charge carriers move into the region from which positive charge carriers partly left,
leaving behind negatively charged atoms, there will be a surplus of negative charge in this thin
layer of the p region. Similarly, there will be a surplus of positive charges in the adjoining thin
layer of the n region.

These two charged layers produce an electric field (as in a parallel-plate capacitor), re-
sulting in an electric force on free charge carriers that opposes the diffusion process. This elec-
tric force eventually (actually, in a very short time) stops the diffusion of free charge carriers.
Thin layers on both sides of the boundary surface are thus depleted of their own free charge
carriers. These two layers are known as the depletion region. Consequently, the depletion region
finds itself between the p and n undepleted regions, and contains two layers of equal and op-
posite charges. Let the number of positive charges per unit volume in the 1 region be N, and
the number of negative charges in the p region be N_. The volume densities of charge in the two
layers of the depletion region are p, = N,Q (in the n part), and p_ = —N_Q (in the p part),
where Q is the absolute value of the electron charge.

If the diode is not biased (its two terminals are left open), the opposite charges on the
two sides of the junction are of equal magnitude. Therefore the thicknesses of the two charged
layers, x, and x,, are connected by the relation N_x, = N,x,. Usually the diode is made so
that the # side of the junction has a much larger concentration of diffused negative free charge
carriers than the other, that is, N_ > N. This means that x, > x,. Such a junction is called a
one-sided step junction, and its charge concentration profile is sketched in Fig. 7.6b. This tells
us that the width of the depletion layer on the p side can be neglected to the first order, i.e., this
charged layer can be approximated by a negatively charged sheet of a surface charge density
o = N._Q/x,, Fig. 7.6c. On the n side, the depletion layer is effectively a uniform volume charge
density (that is, N, is coordinate-independent). We already know from Example 5.3 what the
field of the negative surface-charge sheet is, and it is shown in the middle of Fig. 7.6c¢.

What is the electric field of a volume charge, such as the one on the right in Fig. 7.6c?
Outside the charged layer, it is equal to the field of a charged sheet of the same total charge:

o _ Pxn

N+an
Eoutside = =

7.24

2¢ 2¢ 729

Inside the volume charge, we can apply Gauss’ law to a thin slice dx wide, as indicated

on the right in Fig. 7.6c, which contains p dx surface charge. It is left to the reader to show

that integration of the field resulting from all the slices between 0 and x, gives the following

expression for the electric field inside the volume charge density as a function of the x coordi-
nate:

_ fol Xn N N+an Xn
Einside = p <x 2) =— <x > ) (7.25)

DIRECTED In TUE +X DIRECTION | X>%q ) AND N THE =X DIReCTpM
lF X < XAa
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This expression is shown graphically on the?el%gn Fig. 7.6d. Using the principle
of superposition, we can now add the field of the negative surface charge (in the
middle of Fig. 7.6d) to the field of the positive volume charge we found (on the left RgHT
in Fig. 7.6d) to get the field profile of a pn diode, shown on the ﬂ-ggt in Fig. 7.6d. It is
left to the reader as an exercise to sketch the potential distribution inside a diode.

A

i
Questions and problems: Q7.20 and Q7.21, P7.10 / 5@( W

e

7.7  Electrostatic Boundary Conditions

In inhomogeneous media consisting of several homogeneous parts there is, obvi-
ously, an abrupt change in some quantities describing the field on the two sides of
boundaries. For example, if on such a boundary there is a surface polarization charge,
itis a source of the electric field component directed in opposite directions on the two
sides of the boundary; consequently, the total electric field must have a different di-
rection and magnitude on the two sides of the boundary.

Such abrupt changes of any quantity describing the field must satisfy basic field
equations and definitions. Specialized field equations describing this behavior, more
precisely connecting the values of fany field quantity on two sides of a boundary sur-
face, are known as/ boundary condztzo“ms What are boundary conditions needed for?
Note that they represent, in fact, fundamental equations of the electrostatic field spe-

_cialized to boundary surfaces. Therefore in a medium consisting of several dielectric
bodies, the field transition from one body to the adjacent body through a boundary
surface must be as dictated by the boundary conditions. Otherwise this could not be
a real electric field because it would not satisfy the field equations everywhere. Note
that this is true for aH boundary conditions we introduce in later chapters.

Eq. (4.7), to the narrow reéféngular contour AC in F1g 77. Because the length 0fThe
shorter sides approaches zero, the contribution to the line integral of E along them is

E1 01

np

Figure 7.7 Boundary between two media. A narrow rectangular
contour is used in the law of conservation of energy and a coinlike
closed surface is used in Gauss’ law for deriving boundary conditions
for vectors E and D, respectively.
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zero. Along the two longer sides, the contribution is (E; - dl; + E; - dlb). The scalar
products are simply tangential components of the two electric field strength vectors,
which we denote by the subscript “t.” Because dl; = —dl;, the boundary condition
for the tangential components of vector E is

Eqt = Ei?t (valid in general). (7.26)

(Boundary condition for tangential components of vector E)

Note that no other assumptions are needed to derive this condition except Eq. (4.7).
Consequently, it is valid for all cases of the electrostatic field. We will see that it is
valid also for the general case of a time-varying electromagnetic field.

There is no flux of vector D through the curved surface because its height is van-
ishingly small. The flux through the two cylinder bases is D1y AS (the outward flux)
and —Dy, AS (the inward flux), both with respect to the reference unit vector n di-
rected into dielectric 1, where the subscript “n” denotes the normal component. The
enclosed charge being o AS, the generalized Gauss’ law yields

Di-n—Dy -n=o0, orDiy — Dy, = o (valid in general). (7.27)

(Boundary condition for normal component of vector D; unit vector normal, n,
directed into medium 1)

In the special case when there is no surface charge on the boundary, this becomes
D1y = Do (no free surface charges on boundary). (7.28)

Another important case is the boundary between a conductor and a dielectric.
Let the dielectric be medium 1, and the conductor be medium 2. We know that there
is no field inside a conductor. Therefore Dy, = 0, and Eq. (7.27) becomes

Dy = o (on boundary of dielectric and conductor). (7.29)

Note that this is essentially the same equation as Eq. (6.5). We will see that Egs. (7.27)
to (7.29) are also valid in ggpgral, and not only for electrostatic fields.

Questions and problems: Q7.22 to Q7.24, P7.11 to P7.15
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7.8 Differential Form of Generalized Gauss’ Law

The generalized Gauss’ law in Eq. (7.20) can be transformed into a differential equa-
tion, known as the differential form of Gauss’ law. To obtain this differential equation,
let us apply Eq. (7.20) to a small volume Av enclosed by a surface AS, and divide both
sides of the equation by Av. The right side then becomes simply the volume charge
density, p, inside AS. The left side becomes the same as the expression in Eq. (7.12),
with P substituted by D. We know that this expression is the divergence of vector D.
So we obtain

divD = p. (7.30)
(Differential form of generalized Gauss’ law)

Since the divergence of D is a combination of derivatives of the components of
D, this is indeed a differential equation in three unknowns, the three scalar compo-
nents of vector D. It is known as a partial differential equation because partial deriva-
tives, with respect to individual coordinates, enter into the equation. We will see that
the basic equations of the electromagnetic field, Maxwell’s equations, are a set of four,,
partial differential equations. Equation (7.30) is one of these four equations. :

7.9 Poisson’s and Laplace’s Equations: The Laplacian

The potential at a point is related to the volume charge density at that point by a
differential equation known as Poisson’s equation. A special case of Poisson’s equation
for the case when the volume charge density is zero is called Laplace’s equation. The
derivation of these equations is quite simple.

We know that we can always represent vector E as E = —~grad V = —~V V. For
linear media, therefore, D = —e grad V = —¢ V V, so that from the generalized form
of Gauss’ law, Eq. (7.13), we obtain

div(e gradV) =V . (eVV) = —p. (7.31)

This is the most general form of Poisson’s equation. For the frequent case of a homo-
geneous dielectric (¢ the same at all points), Eq. (7.31) becomes

V/LV/ ) i div(gradV) =V - (VV) = — (7.32)

(Poisson’s equation)

Laplace’s equation is obtained from Egs. (7.31) and (7.32) if we set p = 0:
div(e gradV) = V- (eVV) =0 (7.33)
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for a general, inhomogeneous dielectric with no free charges, and

div(gradV) =V - (VV) =0 (7.34)

(Laplace’s equation)

for a homogeneous dielectric with no free charges.

The operator div(grad) = V - V is known as Laplace’s operator, or the Laplacian,
and is denoted briefly as A or V2. It is a simple matter to show that, in a rectangular
coordinate system, Laplace’s operator has the form

32 82 32
2
-y 2 7.35
axz  9y? t 522 (7.35)
(Laplacian operator in rectangular coordinate system)

As an important example, if the volume charge distribution in a region is a
function of a single rectangular coordinate, for example of x, V is then also a function
of x only. Poisson’s equation becomes

PV _ pW)
dx2 €
This equation is used often, for example, in the analysis of semiconductor devices
including diodes, transistors, and capacitors.

(7.36)

Example 7.3—The pn Diode Revisited. In this example, we use Poisson’s equation to
find the potential distribution in a pn diode, using the one-sided step junction approximation
from Example 7.2. Poisson’s equation for the p side of the junction can be written as

d2v ON_ ON_

d T <_ €o€r ) el 737
and for the n side as

drv ON,

T en 7.38)

However, in the one-sided step approximation, the width of the depletion layer on the
p side is negligible, so we only need to solve Eq. (7.38). We first integrate once with respect to
x from 0 to x. We need one boundary condition to determine the integration constant in this
step. We know that there is no electric field outside of the depletion region, so the boundary
condition is dV/dx = 0 at x = x,,. Integrating Eq. (7.38) once therefore yields

v ON,

dx €p€r

(x = x,). (7.39)



98 CHAPTER 7

Because we know that E = —(dV/dx)u,, we can rearrange terms in Eq. (7.39) to obtain
the same expression for the electric field as the one shown graphically in Fig. 7.6d. To get the
potential, we integrate another time. Let us adopt as the boundary condition that the potential
is zero at x = x,, (we know that we can adopt it to be zero at any point). We thus obtain

2
2
Vi = - Pk (1 _ 1) . (7.40)

As this potential exists inside the diode even when its terminals are not connected to an
external voltage souzrce, it is called the built-in potential.

When a bias is applied to a diode, it changes the width of the depletion layer. If we con-
nect the diode p region to the positive output of a voltage source and the # side to the negative
one, the depletion layer gets narrower, making it easier for free charges to flow through it. This
is called forward bias. If the diode terminals are connected the other way, the depletion layer
becomes thicker and current flow is disabled. This is called reverse biags. If an ac voltage is ap-
plied to the diode, in one half of the cycle the diode will conduct and in the other half there
will be no current. Therefore a diode is a rectifier.

Questions and problems: P7.16 to P7.22

7.10 Some Practical Electrical Properties of Dielectrics

Applications of dielectrics in electrical engineering are hardly possible without
knowing their electrical properties. We briefly mention here some of these prop-
erties.
A UM,XM ‘‘‘‘‘ In addition to relative permittivity, two more properties need particular atten-
S %wd,/? tion. The first is the dielectric strength of a dielectric. This is the largest magnitude of
the electric field that can exist in a dielectric without damaging it. If the field magni-
tude is greater than the dielectric strength of the dielectric, dielectric breakdown occurs
(the dielectric burns, cracks, ionizes, and becomes conductive, becomes very lossy,
etc.).

The typical value of the dielectric strength for air is about 3 - 10° V/m, or
30kV/cm. For liquid and solid dielectrics the electric field strength ranges from about
15-10° V/m to about 40 - 10° V/m. Values of the dielectric strength of some common
dielectrics are given in Appendix 4.

Another important property of dielectrics is loss that produces heat. Most di-
electrics have a very small number of free charges, so that resistive (Joule’s) losses

) in them due to time-constant fields (except for very large field magnitudes) are usu-
’ ally negligible. In-time-varying fields, however, there is a new type of loss, known
— as thié polarization logs, that is much larger than Joule’s losses. Qualitatively, the time-
varying electric field induces time-varying dipoles in the dielectric, which start to
vibrate miore-vigorously due to these oscillations. This vibration is heat, i.e., it repre-

sents losses to the field polarizing the dielectric.

Questions and problems: Q7.25 to Q7.27, P7.23
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7.11  Chapter Summary

1.

Q7.1

Q7.2
Q7.3

Q74
Q7.5
Q7.6

Q7.7.

Q7.8.

Q7.9.

If introduced into an electrostatic field, all dielectrics can be visualized as a vast
ensemble of small electric dipoles situated in a vacuum. We say that such a
dielectric is polarized.

. The polarization of a dielectric at any point is described by the polarization vec-

tor, P, representing a vector density of dipole moments at that point. The dipole
moment of a dipole of charges Q and —Q separated by a distance d (directed
from —Q to Q) is defined as p = Qd.

The polarized dielectric can further be considered as an equivalent distribution
of volume and surface charges, known as polarization charges. These two charge
densities are determined in terms of the polarization vector, P. The rest of the
dielectric has no effect whatsoever on the field and can be removed. The polar-
ization charges must, therefore, be considered to be situated in a vacuum.

. The vector quantity D = (&E + P) has a simple and useful property: its flux

through any closed surface equals the total free charge inside the surface. This
equation is known as the generalized Gauss” law, and vector D as the electric dis-
placement vector.

. The generalized Gauss’ law can also be written in the form of a differential

equation, V - D = p. This is known as the differential form of Gauss’ law.

There is a simple differential relationship between the potential function at a
point and volume charge density at that point, known as the Poisson equation,
V-eVV = —p. Its special form, when there are no volume charges, is known as
Laplace’s equation, V- eVV = 0.

QUESTIONS

. At a point of a polarized dielectric there are N dipoles per unit volume. Each dipole
has a moment p. What is the polarization vector at that point?

. A body is made of a linear, homogeneous dielectric. Explain what this means.

. What is the difference between an inhomogeneous linear dielectric and a homogeneous
nonlinear dielectric?

. Why is x, = 0 for a vacuum?
. Are there substances for which x, < 0? Explain.

. An atom acquires a dipole moment proportional to the electric field strength E of the
external field, p = «E (o is often referred to as the polarizability). Determine the electric
force on the atom if it is introduced into a uniform electric field of intensity E.

Answer question Q7.6 for the case in which the atom is introduced into the field of a
point charge Q. Determine only the direction of the force, not its magnitude.

A small body—either dielectric or conducting—is introduced into a nonuniform elec-
tric field. In which direction (qualitatively) does the force act on the body?

Two point charges are placed near a piece of dielectric. Explain why Coulomb’s law
cannot be used to determine the total force on the two charges.
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Q7.10.

Q7.11.

Q7.12.

Q7.13.

Q7.14.

Q7.15.

Q7.16.
Q7.17.
Q7.18.

Q7.19.

Q7.20.
Q7.21.
Q7.22.

Q7.23.
Q7.24.
Q7.25.

Q7.26.
Q7.27.

P7.1.

P7.2.

A small charged body is placed near a large dielectric body. Will there be a force acting
between the two bodies? Explain.

A closed surface S situated in a vacuum encloses a total charge Q and a polarized di-
electric body. Using a sound physical argument, prove that in this case also the flux of
the electric field strength vector E through S is Q/eo.

Arbitrary pieces of dielectrics and conductors carrying a total charge Q are introduced
through an opening in a hollow, uncharged metal shell. The opening is then closed. Us-
ing a physical argument and Gauss’ law for a vacuum, prove that the charge appearing
on the outer surface of the shell is exactly equal to Q.

A positive point charge is placed in air near the interface of air and a liquid dielectric.
Will the interface be deformed? If you think it will be deformed, then will it raise or
sink? What if the charge is negative?

Explain in your own words why Egs. (7.10) and (7.11) imply that the flux of E through
a closed surface AS is zero.

Electric dipoles are arranged along a line (possibly curved) so that the negative charge
of one dipole coincides with the positive charge of the next. Describe the electric field
of this arrangement of dipoles.

Write Eq. (7.16) for the interface of a dielectric and a vacuum. For case (1) assume the
dielectric to be medium 1, and for case (2) medium 2.

Is there a pressure of electrostatic forces acting on a boundary surface between two
different dielectrics situated in an electrostatic field? Explain.

Prove that the total polarization charge in any piece of a dielectric material is zero.

A point charge Q is placed inside a spherical metal shell, a distance d from its center.
In addition, the shell is filled with an inhomogeneous dielectric. Determine the electric
field strength outside the shell.

Does Eq. (7.18) mean exactly the same as Eq. (7.17)? Explain.
Can the relative permittivity of a dielectric be less than one, or negative? Explain.

Can you find an analogy between properly connecting sleeves to a jacket, and using
boundary conditions in solving electrostatic field problems? Describe.

Prove that a charged conductor situated in an inhomogeneous but linear dielectric has
a potential proportional to its charge. [Hint: consider the polarized dielectric as an ag-
gregate of dipoles situated in a vacuum.]

Discuss question Q7.23 for a case in which the dielectric is not linear.
What is the unit of dielectric strength of a dielectric?
Explain how 30kV/cm is the same as 3 - 10° V/m.

Are polarization losses in a dielectric the same as resistive Joule’s losses? Explain.

PROBLEMS

Using the relation E = —VV, determine the spherical components E,, Ey, and E; of the
electric field strength of the electric dipole in Fig. 7.4.

Determine the electric force on a dipole of moment p located at a distance # from a
point charge Qy, if the angle between p and the direction from the charge is arbitrary.



P7.3.

P7.4.

P7.5.

P7.6.

P7.7.

P7.8.

P7.9.
P7.10.

P7.11.

P7.12.
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An atom acquires a dipole moment proportional to the electric field strength E of the
external field, p = «E. Determine the force on the dipole if it is introduced into the field
of a point charge Q at a distance r from the charge.

A homogeneous dielectric sphere is polarized uniformly over its volume. The polar-
ization vector is P. Determine the distribution of the polarization charges inside and
on the surface of the sphere.

A thin circular dielectric disk of radius # and thickness d is permanently polarized with
a dipole moment per unit volume P, parallel to the axis of the disk that is normal to its
plane faces. Determine the electric field strength and the electric scalar potential along
the disk axis. Plot your results.

Determine the density of volume polarization charges inside a linear but inhomoge-
neous dielectric of permittivity e(x, y, z) at a point where the electric field strength is
E. There is no volume distribution of free charges inside the dielectric.

The permittivity of an infinite dielectric medium is given as the following function of
the distance r from the center of symmetry: €(r) = €(1 + 4/r). A small conducting
sphere of radius R, carrying a charge Q, is centered at » = 0. Determine and plot the
electric field strength and the electric scalar potential as functions of 7. Determine the
volume density of polarization charges.

A conducting sphere of radius a carries a charge Q. Exactly one half of the sphere is
pressed into a dielectric half-space of permittivity €. Air is above the dielectric. Deter-
mine the free and polarization surface charge density on the sphere and in the dielec-
tric.

Repeat problem P7.8 for a circular cylinder of radius a with charge Q' per unit length.

A small spherical charged body with a charge Q = —1.9- 1077 C is located at the center
of a spherical dielectric body of radius 2 and relative permittivity ¢, = 3. Determine the
vectors E, P, and D at all points, volume and surface density of polarization charges,
and the potential at all points. Is it possible to determine the field and potential outside
the dielectric body without solving for the field inside the body? Explain.

What is E equal to in a needlelike air cavity inside a homogeneous dielectric of permit-
tivity e if the cavity is parallel to the electric field vector E; inside the dielectric (Fig.
P7.11)?

Figure P7.11 A needlelike cavity

What is E equal to in a disklike air cavity with faces normal to the electric field vector
E, inside a homogeneous dielectric of permittivity € (Fig. P7.12)?
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P7.13.

P7.14.

P7.15.

P7.16.

P7.17.

Figure P7.14 A disklike cavity

At a point of the boundary surface between dielectrics of permittivities ¢, and ¢, the
electric field strength vector in medium 1 makes an angle oy with the normal to the
boundary, and that in medium 2 an angle «,. Prove that tano / tanay = €;/6;.

A dielectric slab of permittivity € = 2¢ is situated in a vacuum in an external uniform
electric field E so that the field lines are perpendicular to the faces of the slab (Fig.
P7.14). Sketch the lines of the resulting vectors E and D.

e
E

Figure P7.14 Field lines normal to

Figure P7.15 Field lines oblique to
dielectric slab dielectric slab

Repeat problem P7.14 assuming that the dielectric slab is at an angle of 45 degrees with
respect to the lines of the external electric field (Fig. P7.15).

One of two very large parallel metal plates is at a zero potential, and the other at a
potential V. Starting from Laplace’s equation, determine the potential, and hence the
electric field strength, at all points.

Two concentric spherical metal shells, of radii 2 and b (b > a), are at potentials V
(the inner shell) and zero. Starting from Laplace’s equation in spherical coordinates,
determine the potential, and hence the electric field strength, at all points. Plot your
results.



P7.18.

P7.19.

P7.20.
P7.21.

P7.22.

P7.23.
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The charge density at all points between two large parallel flat metal sheets is py. The
sheets are d apart. One of the sheets is at a zero potential, and the other at a potential
V. Find the potential at all points between the plates starting from Poisson’s equation.
Plot your result.

Repeat problem P7.18 if the charge density between the plates is p(x) = pyx/d, x being
a coordinate normal to the plates, with the origin at the zero-potential plate. Plot your
result and compare to problem P7.18.

Repeat problem P7.19 if the origin is at the plane of symmetry of the system.

Two long coaxial cylindrical thin metal tubes of radii 2 and & (b > a) are at potential
zero (the outer tube) and V. Starting from Laplace’s equation in cylindrical coordinates,
determine the potential between the cylinders, and hence the electric field strength.

Prove that if V; and V; are solutions of Laplace’s equation, their product is not gener-
ally a solution of that equation.

The radii of conductors of a coaxial cable with air dielectric are 2 and b (b > g). Deter-
mine the maximum value of the potential difference between the conductors for which
a complete breakdown of the air dielectric does not occur. The dielectric strength of air
is EO‘



